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SUMMARY

A unified algorithm is presented for the refinement of finite element meshes consisting of tensor product
Lagrange elements in any number of space dimensions. The method leads to repeatedly refined
n-irregular grids with associated constraint equations. Through an object-oriented implementation
existing solvers can be extended to handle mesh refinements without modifying the implementation of the
finite element equations. Various versions of the refinement procedure are investigated in a porous media
flow problem involving singularities around wells. A domain decomposition-type finite element method
is also proposed based on the refinement technique. This method is applied to flow in heterogeneous
porous media. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Adaptive grids constitute an important tool for increasing the computational efficiency of
finite element solvers. There are three basic approaches to mesh refinement: decreasing the
element size (h-refinement), increasing the polynomial order of the finite element basis
functions (p-refinement), and moving the nodes (r-refinement). Combinations of these meth-
ods are also possible. In the present paper the focus is on general 1D, 2D and 3D mesh
refinement techniques that can be implemented in existing finite element codes without, at least
in principle, any modifications of the standard assembly process and the computation of
elemental matrices and vectors. This constraint is very difficult to fulfil when applying
p-refinement [1]. The flexibility of r-refinement is somewhat limited. Therefore, the focus is on
h-refinement. An excellent overview of h-refinement procedures, including mesh generation,
error estimation and practical experience, is provided by Strouboulis and Haque [2].

There are two types of h-refinement, mesh regeneration or element subdivision. In the latter
approach an element-wise refinement indicator is used to determine whether an element needs
to be refined (or coarsened). Mesh regeneration means that the whole finite element grid is
recomputed and element sizes are distributed according to a density function [1,3]. The method
proposed in this paper is founded on element subdivision, but it also shows some similarities
to mesh regeneration.

* Correspondence to: Department of Mathematics, University of Oslo, PO Box 1053 Blindern, N-0316 Oslo, Norway.
E-mail: hpl@math.uio.no
1 E-mail: erikh@ife.no

CCC 0271–2091/98/140679–24$17.50
© 1998 John Wiley & Sons, Ltd.

Recei6ed April 1997
Re6ised August 1997



E.J. HOLM AND H.P. LANGTANGEN680

When an element is to be divided into new elements, several approaches are possible. If the
original mesh consists of quadrilateral or hexahedral elements, subdivision into new elements
of the same type leads to irregular nodes (also called slave nodes, constrained nodes or hanging
nodes) on a side if the neighbor element along that side is not also refined. Inserting triangles
or tetrahedra into the neighboring element can transform the irregular node to a regular one,
otherwise an additional constraint equation must be applied for the irregular node. Finite
element grids composed solely of triangles or tetrahedra can be refined in a way that preserves
the element type and avoids the introduction of irregular nodes [4,5]. The latter type of
algorithms might be rather complicated in 3D. Simple, compact algorithms can be developed
by working with quadrilateral and brick elements alone, and allowing irregular nodes.
Moreover, these algorithms give the user better control and more flexibility. This strategy is
therefore adopted in the present work.

Adequate element-wise refinement indicators can, in the simplest case, be based purely on
geometric considerations. For example, in many problems certain properties of the solution,
such as singularities, abrupt changes in coefficients, boundary layers or sharp fronts, are
known beforehand or are found by a simple inspection of the computed solution. Critical parts
of the domain can then easily be established. These type of indicators are referred to as
geometric refinement indicators. They have been successfully used in numerous flow problems.
A more general and mathematically appealing approach is to relate the refinement indicator to
some kind of a posteriori error estimation, based on the computed solution with the current
mesh. Such error estimation makes it possible to design optimal grids with uniform error
distribution. Furthermore, it gives the opportunity to control the error.

The main goal of this study is to develop a unified algorithm that works in 1D, 2D and 3D
(and even higher space dimensions) for structured as well as unstructured grids. Such unified
algorithms tend to be much more compact and simple than more geometrically intuitive
approaches. Existing 3D algorithms usually involve lots of special treatments of various
geometric refinement situations. This complicates the verification of the associated software. It
is thought that software reliability is significantly increased by adopting simple, unified
algorithms that treat the number of space dimensions merely as a parameter. This has proven
to be possible if the elements are of tensor product type. The present refinement approach has
in fact been successfully integrated in finite element codes that parameterize the number of
space dimensions, with a resulting dramatic decrease of the development time for 3D
applications. Trangenstein [6] describes a unified adaptive mesh refinement algorithm for any
number of space dimensions, but the algorithm and the associated data structures were tailored
to explicit time stepping, finite difference/volume methods and patch refinement (see below).
Therefore, both the refinement strategy and the constraint equations are not as general and
flexible as aimed at in the present paper.

Numerous contributions in the literature describe refinement algorithms for quadrilateral
and brick elements. Demkowicz et al. [7] gave a thorough description of a 2D algorithm for
h–p-refinement and corresponding data structures. The irregular node constraints were
handled by modifying the finite element basis functions, and hence also the computation of the
elemental matrices and vectors. This is a common strategy, but in the present study a
h-refinement algorithm is sought, in which the element-wise computations can be kept in
traditional form such that adaptive grids can be easily incorporated into existing solvers
without modifying well-tested software.

Most of the literature contributions deal only with 2D algorithms. Several important
three-dimensional issues have been treated by Chellamuthu and Ida [8]. Their paper is referred
to for further discussion of previous work. Morton et al. [9] presented a 3D algorithm in which
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the constraints associated with irregular nodes are incorporated by modifying the finite
element basis functions, i.e. they introduce a family of new transition elements. According to
Morton et al., this approach is easier to integrate into an existing finite element code compared
with methods based on separate constraint equations. However, the disadvantage with special
transition elements [9,10] is that these new elements must be incorporated into the finite
element library of a code, and the grid must then be composed of different element types. The
present approach allows the original, standard element type and a standard, often highly
optimized, finite element solver to be used.

Refinement algorithms that involve irregular nodes frequently employ the so-called one-level
rule [8]. This results in only one constrained node on the boundary between elements with
different refinement levels. Grids which are refined according to the one-level rule are usually
referred to as one-irregular meshes. The advantage of one-irregular meshes is that the element
size is enforced to vary more smoothly. However, the one-level rule allows only one
subdivision at a time. For increased efficiency and flexibility, the present algorithm allows
n-irregular grids. Nested grids can be easily obtained by repeated application of the n-irregular
subdivision procedure. The construction of an n-irregular mesh allows each coarse grid
element to be refined independently. In finite difference/volume methods it has been popular
to apply n-irregular grids, usually referred to as patch refinements [6,11,12], especially for
hyperbolic equations solved by explicit time stepping. Also in finite element methods for 2D
single-phase porous media flow n-irregular meshes have proven to be successful [13,14]. In the
present paper some advantages with n-irregular meshes are demonstrated for n\1. The major
part of the literature on one-irregular finite element grids is concerned with bilinear and
trilinear elements, whereas the present algorithm is capable of handling tensor product
Lagrange elements of any polynomial degree. Nine-node 2D Lagrange elements are treated in
References [2,15], while the algorithm by Demkowicz et al. [7] is concerne d with midside nodes
in the h–p-refinement.

A general approach for marking boundary conditions in a finite element grid is presented,
and a special strategy is developed for new elements and nodes in the refined mesh to inherit
the proper boundary condition information from the previous refinement level. This is an
important topic that, from a general point of view, is not well-addressed in the literature.
Essential boundary conditions are enforced exactly here, in contrast to the simpler, but
frequently used, penalty methods [7]. Moreover, the construction of the constraint equations
for repeatedly constructed n-irregular meshes is described. Contrary to Chellamuthu and Ida
[8], where different algorithms must be used for constrained nodes on edges and faces of a 3D
element, a unified constraint detection and construction algorithm that works in 2D, 3D and
higher dimensions is presented. The importance of flux continuity is also described, in addition
to continuity of the primary unknown, and the method in which this can be achieved by a
symmetrization procedure of the standard constraint equations.

Object-oriented implementation techniques seem to be very advantageous in the refinement
process [6,16]. This is also the case in the present study. Liu et al. [17] discussed object-oriented
implementation techniques for one-irregular 2D refinement of finite element grids. In the
present paper, another important feature of object-orientation is outlined: by treating the
whole grid as an object, and applying object-oriented design of the whole finite element
simulator, the proposed algorithm allows existing simulators to apply the new adaptive mesh
refinement tools with almost no modification of the original code. A brief account of the ideas
of such an object-oriented design is given.

Finally, a novel application is described for the n-irregular mesh refinement technique for a
certain domain decomposition-type method, where each subproblem has a grid that actually
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covers the whole domain. The approach is an improvement of the global–local analysis
method [18,19]. The numerical examples concern single-phase flow in heterogeneous porous
media.

The paper is organized as follows. In Section 2 the refinement method and its implementa-
tion are described. Section 3 presents a test problem from porous media flow and the
refinement indicators to be used. Section 4 deals with numerical experiments. The use of the
refinement method in a certain domain decomposition-type method is presented and tested in
Section 5, and concluding remarks are given in Section 6.

2. THE GRID REFINEMENT ALGORITHM

The grid refinement algorithm is restricted to finite elements of (deformed) hypercube shape,
but it can handle higher-order basis functions and any number of space dimensions. The
algorithm works in an element-by-element fashion, where the subdivision of one element is
independent of the others. Only some information about whether neighbouring elements are
refined or not is required when forming the constraint equations. The refinements can be
repeated to produce nested grids. The details of the algorithm at a given refinement level are
described below.

2.1. Refinement of a single element

Consider a general d-dimensional finite element mesh consisting of hypercube elements.
These elements are later referred to as the parent elements. Each parent element can be
mapped onto a reference element [−1, 1]d in a co-ordinate system where the co-ordinates are
denoted by j. Let the corresponding physical co-ordinates be x, with the relation x=M(j).
Normally, the mapping M is expressed in terms of the basis functions Ni(j1, . . . , jd) on the
reference element. Assume that the elements with element numbers in the integer set R=
{e1, . . . , eE} have been chosen for refinement. For each ei�R, the element is refined by
partitioning the reference element [−1, 1]d into a regular, uniform grid with grid points

ji 1,. . . ,id
, ij=1, . . . , mj+1, j=1, . . . , d.

For n-irregular grids, mj=n+1. This grid is referred to as the prototype grid of parent
element ei. Anisotropic refinement is easily accomplished, but omitted here to simplify the
notation. New elements with nodes M(ji 1

, . . . ,id) are easily constructed from the prototype
grid. These new nodes are called child nodes. For example, if the original elements are of
multilinear type, Pj=1

d mj new multilinear child elements are defined. In the case of multi-
quadratic elements, 2−dPj=1

d mj new child elements can be created.
The child nodes and the nodes in the parent mesh make up the new refined mesh. Assuming

that the mj parameters, j=1, . . . , d, are the same for all of the refined elements, all the child
nodes of a parent element become regular nodes in the refined mesh if a proper subset of the
neighboring parent elements are also refined. However, if a neighboring element is not refined,
the child nodes at the boundary between the refined and non-refined parent elements become
irregular nodes. Figure 1 depicts a situation with both regular and irregular child nodes at the
boundary of a refined parent element. Note that all interior child nodes of a refined parent
element become regular nodes in the new refined mesh.

The value of a finite element field at an irregular node is constrained by the value at the
neighboring regular nodes. Let the parent element have basis functions Ni(j) and nodal values
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ai, i�J, where J is an appropriate set of indices. The constraint equation to be imposed at an
irregular node jk is

%
i�J

Ni(jk)ai=ak, (1)

where ak (kQJ) is the unknown value of the finite element field at the irregular node. During
the generation of the child nodes, all child nodes on the boundary of the parent element are
marked as candidates for constraints. A postprocessing procedure determines which of these
candidates are irregular nodes in the final grid.

In practice, there are two main difficulties in the present grid refinement algorithm;
determination of the constraint equations and assignment of boundary conditions to new
nodes on the boundary. These topics are treated in the next two subsections.

2.2. Determining the constraint equations

Child nodes marked for constraints during the construction of the refined grid may become
regular nodes if a proper set of neighboring elements are also refined. To determine the real
irregular nodes, constraining elements are sought, i.e. elements that contain a node which is
not coinciding with the standard nodes in the element. In this general approach, the
possibilities of repeated refinements and of more than one irregular node at the element
boundary must be considered. A constraining element is sought through all possible element
generations by comparing the candidates parents, grandparents, etc. with the nodes of adjacent
elements. If a constraining element is found, the node is activated as an irregular node in the
grid.

To illustrate the algorithmic details, a one-level refinement of a uniform grid is studied (see
Figure 2). Here, element 2 has a non-standard node A. Element 2 is then referred to as a
constraining element for the irregular node A. In the construction algorithm, node A is marked
for further investigation because it was generated on the boundary of its parent element. The
constraint equation for node A is instantly constructed using the finite element interpolation
functions in element 2 according to Equation (1). Nodes B and C are then referred to as the
parent nodes of A (the other two nodes of element 2 do not contribute to the constraint

Figure 1. Sketch of mesh refinement.
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Figure 2. Sketch of a one-level mesh refinement, with element numbers indicated.

equation because the interpolation functions associated with these nodes vanish at node A). In
this one-level refinement, it is easy to realize that a constraining element for node A must
include node B and C among its standard nodes. A check-list of nodes consisting of the parent
nodes of A is established. Searching through the adjacent elements of the irregular node
candidate A, it is clear that element 2 contains both nodes in the check list, but not A itself.
Therefore, node A fulfils the requirements of being a true irregular node, and element 2 is the
constraining element for node A.

The search for a constraining element for a possible irregular node is somewhat more
complicated in a grid with several levels of refinement. Constraining elements can now
originate from any of the levels prior to the current one. First, the previous level is examined
as before, using a check-list containing parent nodes. In Figure 3 the constraint candidate node
D is investigated by searching for its parent nodes A and B among elements in the
neighborhood (elements 2, 8, 11 and 13). A constraining element is not found, i.e. an element

Figure 3. Sketch of a two-level mesh refinement.
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Figure 4. Sketch of a three-level mesh refinement.

containing A and B, but the parent A itself is a constraint candidate with corresponding
grandparents C and B. A constraining element from the grandparent generation will clearly
include the nodes B and C. Generally, a new check-list is established for the next level of
refinement, where the youngest constrained nodes are substituted in the check-list by their
parents, and finally, the duplicated members are removed. The algorithm is implemented as a
recursively called function. The recursion is terminated when either a constraining element is
found, or when all nodes in the check-list are established as truly regular. In the present
example, the second check-list level reveals a constraining element, namely element 2.

To see the necessity of unwrapping only the newest generation at each step, consider the
situation in Figure 4 and the constraint candidate node G. A constraining element containing
the parents F and A is not found. Substituting the constrained parent F with its parents E and
A in the check-list, the constraining nodes E and A are detected in element 8. Node G is then
truly irregular. Note that if the older constrained parent A was simultaneously substituted by
its parents B and C, the search would have been for an element with all of the nodes B, C and
E, and would have failed.

This algorithm has proven to be robust for any number of space dimensions, any order of
the interpolation functions, any number of repeated refinements, and any value of n. It is
important to note that after constraining elements for a node, the search can be restricted to
elements evolving from neighbors of the nodes of the parent element in the previous grid. The
amount of work involved in the search algorithm is very small compared with operations
involving the total number of nodes (such as the solution process). This also makes it easier to
design parallel versions of the refinement method. The present algorithm for construction of
constraint equations is far more general and free of special considerations than grid generation
schemes, in which new neighbor elements are introduced to transform irregular nodes to
regular nodes. This advantage is especially important in 3D and for higher-order elements.

2.3. Incorporating the constraint equations

The traditional finite element equations, computed in the standard element-by-element
fashion without incorporating any constraints due to irregular nodes, can be written as
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%
n

j=1

Aijaj=bi, i=1, . . . , n, (2)

where n is the number of regular and irregular nodes. It is assumed that a single, scalar
differential equation is solved. Vector equations are easily handled by applying the method to
each component equation. The constraint equations are all of the form of Equation (1). This
can be rewritten as

%
n

j=1

Ckjaj=ak, (3)

if node k is constrained. The constants Ckj are zero for the degrees of freedom that do not enter
the constraints.

The solution of Equation (2) is subject to the linear constraints of Equation (3) and is
accomplished by inserting Equation (3) into (2)

%
n

j=1
j"k

(Aij+CkjAik)aj=bi, i=1, . . . , n, i"k. (4)

This modified equation system incorporates the single constraint equation (3), but suffers from
two problems. First, the modification destroys any initial symmetry in the coefficient matrix.
Second, for several differential operators, the solution must be continuous at the nodes and the
associated flux must be continuous in a weak sense over the element boundaries, but this is not
generally fulfilled in the system (4). Both problems can solved by the following modification of
the original system

%
n

j=1
j"k

[Aij+CkjAik+Cki(Akj+CkjAkk)]aj=bi+Ckibk, i=1, . . . , n. (5)

By inspection, the new coefficient matrix is symmetric if Aji=Aij. Appendix A shows that
Equation (5) preserves weak continuity of the flux. Symmetric introduction of constraints is
also ensured by the methods in References [2,7], although limited to one-irregular grids.
Incorporation of a set of constraints is trivially accomplished by applying Equation (5) for each
constraint equation.

The modification (5) is performed globally after the elemental contributions are assembled
in the standard manner. This means that the computation of the elemental matrices and vectors
is unaffected by the grid refinement procedure.

2.4. Boundary conditions at child nodes

It is assumed that boundary nodes in the parent mesh are marked with one or several
boundary indicators. Each indicator can be on or off at the nodes. A boundary indicator can
be used to e.g. select the nodes that are subject to a particular essential boundary condition in
the grid. The boundary indicator concept is general and can also be used to mark internal
boundaries or regions. Child nodes must, of course, inherit the proper boundary indicators.
This is a non-trivial problem, the solution of which is presented below.

A child node that coincides with a parent node can simply inherit the boundary indicators
of the parent node. A child node on an edge or side of an element inherits a boundary indicator
if all parent nodes on the edge or side are subject to this indicator. To avoid complicated testing
procedures and handling of many special cases, especially in 3D grids a compact and general
algorithm was developed for inheriting boundary indicators. This algorithm applies to tensor
product elements of Lagrange type in any number of space dimensions.
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Child nodes that are generated in a parent element, where at least one boundary indicator
is present in at least one parent node, may be subject to boundary indicators and must be
investigated further. For each such child node, with co-ordinate y, we compute the quantity

U(y, k)=%
l

Wk(l)Nl(y), k=1, . . . , nb. (6)

Here, k is a boundary indicator number, nb is the total number of possible boundary indicators,
Nl denotes the basis functions in the parent element, and Wk(l) is a weight function defined
by Wk(l)=k if parent node l is subject to boundary indicator k, otherwise Wk(l)=0. Let V1

denote the parent element domain, let V2 be a side, and let V3 be an edge. We write y�Vj, j=1,
2, 3, when y is a point in Vj. Similarly l�Vj means that parent node l lies in Vj. The following
result is given for tensor product elements of Lagrange type

%
l�Vj

Nl(y)=1, y�Vj, j=1, 2, 3. (7)

Generalization of this result to any number of space dimensions is straightforward. With the
result of Equation (7) and the expression (6) it can be determined whether a child node with
co-ordinates y is subject to boundary indicator k by testing if U(y, k)=k. Inheritance of
boundary indicators is hence reduced to evaluating a simple formula.

2.5. Object-oriented implementation

The dynamic data management and the often rather complicated algorithms that are needed
in adaptive grid refinement are most conveniently implemented in a programming language that
supports abstract data types and object-oriented programming (OOP). Most of the literature
on data structures and implementation of grid refinement are, nevertheless, described in terms
of primitive FORTRAN arrays, although the use of abstract data types and OOP, especially
in C+ + , is emerging [6,16,17]. A thorough treatment of OOP, C+ + , and adaptive finite
element meshes is presented in Reference [17] (although only 2D one-irregular refinements are
considered). The programming efforts are greatly reduced and simplified by employing the
modern software development techniques, but computational efficiency must not be abandoned
in favor of more advanced and appealing data types that might yield very elegant code. The
general rule of thumb seems to be to use OOP for high-level data and algorithm management,
and use ‘do-loops’ and primitive array structures in CPU-intensive low-level code. The current
refinement algorithm has been implemented in C+ + , where a compromise between primitive
array structures and more high-level data types was sought. The details will not be discussed
further in this paper. Interested readers might consult Trangenstein [6], Lemke et al. [16], Liu
et al. [17], and Ewing [20], and the references therein for implementation details of other, but
related, refinement strategies. Instead, the use of object-oriented programming to integrate the
whole grid refinement process in an existing finite element code is studied here. Using OOP at
such a high abstraction level in the program usually allows most of the convenient OOP
constructs to be applied without sacrificing computational efficiency [21,22].

The grid refinement procedure has been implemented in the software system Diffpack [23].
Diffpack provides the basic building blocks for finite element codes in terms of a library of C+ +
classes. These classes reflect mathematical quantities and numerical methods at various
abstraction levels, ranging from simple array structures to linear system solvers and finite element
fields. Object-oriented design has been a vital mean for structuring the library and simplifying
the application code [24], yet with a high efficiency [21]. For example, to solve a Poisson equation
or a standard elasticity problem in Diffpack, the programmer only needs to provide the
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integrands in the weak residual form, essential boundary conditions, some problem specific I/O,
and a high-level program flow routine.

Finite element grids are represented by an object of class GridFE in Diffpack. This class
contains standard data structures for nodal co-ordinates, element connectivity and boundary
information. However, the users of a class never operate directly on the data structures, but
through member functions of the class. The member functions define a mathematical interface
to grids, i.e. they define common grid operations, such as looking up the co-ordinates of a nodal
point and looking up the global degree of freedom number corresponding to the local node
number in a particular element. If the internal data structures are changed, e.g. by replacing
arrays by lists or trees, the member function interface remains the same, and the code in other
parts of the program that use class GridFE is not affected. This encapsulation technique is
particularly advantageous when incorporating an adaptive mesh class in an existing library.

The name Grid2FE is used here to denote the new adaptive mesh class. Naturally, Grid2FE
has an internal data management that is much more complicated than GridFE. Nevertheless,
the mathematical interface (i.e. the member functions) is almost the same for a standard grid
as for an adaptive grid. Since all the data structures are hidden inside the class, rather than
appearing as individual arrays in long argument lists as in FORTRAN subroutine libraries, both
standard grids and adaptive grids are transferred to other routines of the same argument type.
If Grid2FE is a so-called subclass [25] of GridFE, OOP techniques allow the application code
to be written solely using the name GridFE, except when declaring and allocating the grid object.
The compiler will generate information such that at run-time the program knows whether the
apparent GridFE object is actually a Grid2FE object or a standard GridFE object. In C+ +
this is technically achieved through the use of inheritance and virtual functions.

The finite element software that operates on GridFE objects needs standard GridFE
functionality as well as information about the constraints. It is then natural to define a virtual
function that extracts the constraint information. This function is of course empty in class
GridFE, whereas class Grid2FE provides a version that extracts suitable data structures. Since
the Diffpack finite element classes operate only on GridFE objects (or rather GridFE pointers
or references), the existing library will also work without modifications when the more
complicated Grid2FE objects for adaptive refinements are fed into the library computations.
Similarly, application codes which use the library to solve initial-boundary value problems are
also principally unaffected of whether the grid object is of standard or adaptive type. Of course,
the application code will usually need some additional information on refinement strategies, etc.
Again, this information is provided in terms of a class object, resulting in an order of ten new
code lines in a simulator to incorporate the adaptive grid.

It is emphasized that many of the algorithmic decisions in the present work, e.g. the use of
separate constraint equations rather than transition elements [9,10], are influenced by the
object-oriented design and the corresponding possibility to incorporate the new Grid2FE in
existing simulators without modification of already debugged implementation of the weak forms
of the partial differential equations.

3. MODEL PROBLEM AND REFINEMENT INDICATORS

3.1. Boundary-6alue problem

Theory and numerical examples in this paper mostly refer to a model problem describing
single-phase fluid flow in heterogeneous porous media. Let p be the fluid pressure, 7g the specific
fluid weight, 9D the unit vector in the vertical direction, m the dynamic viscosity, x a spatial
point, xr the location of a well, r=1, . . . , nw, Qr the corresponding well strength of a Dirac delta
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function well model (Qrd(x−xr)), and finally, let K be the permeability. For constant 7g, the
fluid potential c=p−7gD is introduced as the primary unknown. Then, c is governed by

9 ·
�K

m
9c

n
= %

nw

r=1

Qrd(x−xr) in V, (8)

with the associated boundary condition
9c ·n=0 (9)

on (V, where n is the outward unit normal of (V. Global mass conservation and Equation (9)
imply the constraint Sr Qr=0 on the well strengths.

The bilinear forms a(u, 6), aj(u, 6): V×V�R are defined by

a(u, 6)= %
ne

j=1

aj(u, 6), aj(u, 6)=
&

Vj

9u ·K ·96 dV, u, 6�V,

where V is the Sobolov space H1(V), Vj denotes element j, and ne is the total number of
elements. Also, define the linear functional

L(6)= %
nw

i=1

Qr6(x−xr), 6�V.

Introducing a finite dimensional subspace Vh¦V, and letting c. =�i=1
n Nic. i�Vh be the finite

element approximation to c, gives the standard discrete weak form for this problem: Find
c. �Vh such that

%
n

j=1

a(Ni, Nj)c. j=L(Ni), i=1, . . . , n.

3.2. Geometric refinement indicators

Simple refinement indicators based on geometric properties of the solution or the coeffi-
cients in the PDE can be used as an alternative to, or in combination with, a posteriori error
estimators. A posteriori estimators must often be specially designed for the current problem,
and may not always be robust enough to justify the resulting overhead [14]. Geometric error
indicators are natural in many problems. For example, in porous media flow, it is known that
the solution has singularities at the wells and at corners of the domain (with interior angle
larger than p). Moreover, a h-refinement is desired in the vicinity of large jumps in the
permeability. Saturation equations in immiscible flow or concentration equations in miscible
flow develop sharp fronts that are candidates for local mesh refinements. A trivial geometric
indicator can then be based on the gradient of the solution. The advantage of geometric
indicators is that they are very cheap to compute, easy to use, and give the user a good control
over where the refinements are performed. True error estimators often tend to predict
refinement in areas that later must be coarsened, but geometric indicators usually avoid the
need for coarsening. In time-dependent problems it might be important to avoid coarsening to
increase the computational efficiency [20]. The disadvantage with geometric refinement indica-
tors is that the user has no direct control of the error in the computation.

3.3. Error estimation

Most of the state-of-the-art error estimators for problems involving the Laplace operator
and smooth solutions have been investigated and compared by Babuska et al. [26]. They
conclude that a discrete version of the improved Zienkiewicz–Zhu estimators [27,28] is the best
estimator. The estimator used in the present study is a variant of the Zienkiewicz–Zhu (ZZ)
estimator [1], and it should be noted that the solution exhibits a singularity and, in fact, infinite
values in the wells.
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Define the error e=c−c. . The gradient of c is often of particular physical interest, such as
in the present model problem, where (K/m)9c is the fluid velocity. It is therefore appropriate
to study e in the energy norm

eE(V)
a(e, e), eE(Vj)

aj(e, e). (10)

An error indicator is introduced for element j,

Ij=

ne

e

eE(Vj)

eE(V)

,

that measures the ratio of the error in the current element and a target mean square element
error, including an adjustable factor e. If Ij\1, the error in element j is larger than the target
error and the element should be refined. The following error measure can also be defined [1]:
aj=eE(Vj)

/
	Vj
dV.

The critical step now is to find an a posteriori estimate of 9c. The simple and popular
strategy, where 9c is approximated by an L2-projection 9c* of 9c. is adopted here [1,3]. A
superscript asterisk is used in Ij and aj (i.e. I j* and a j*) if the exact gradient is replaced by a
smoothed version of the computed gradient field.

4. EVALUATION OF THE METHOD

4.1. A stationary problem with singularities

The single-phase porous media flow problem specified in Section 3.1 is considered. There are
two particular features of the equation for c that calls for adaptivity. First, large pressure
gradients appear in the vicinity of the wells, and proper resolution of such steep solutions
requires a small mesh size. Second, the permeability K often exhibits very large jumps along
geometrically complicated surfaces separating various geological regions. Refinement around
wells is addressed in the present section, whereas refinements due to jumps in K are a subject
of Section 5.

Consider a 2D domain V= [−1, 1]× [−1, 1], with an injection well in xI= (−0.6, −0.6)
and an extraction well in xE= (0.6, 0.6). A simple analytical solution that is convenient to
work with, is c=Q ln(r−rI)−Q ln(r−rE), where r=x, rI=xI and rE=xE (note
that a norm without subscript implies the Eucledian norm in this paper). This analytical
solution is then specified as Dirichlet conditions at the boundary. The velocity is not integrable
around the wells, therefore, a small circular area is excluded around each well in the
computation of the energy norm. A corresponding 3D problem in V= [−1, 1]3 has also been
investigated and gave the same qualitative effects as demonstrated for the comprehensive 2D
experiments below.

Figure 5 shows the error, logc−c. H 1(V), as a function of log n for six different refinement
strategies. The five refined grid types lead to faster convergence rate than a uniform grid.
Moreover, the a priori geometric criteria perform better than the error indicator I j* and a
criterion based on the size of 9c. . This demonstrates that insight into the problem can devise
better refinement strategies than widely used automatic error estimation procedures. The best
results in this 2D test problem were obtained by experimenting with an n-irregular grid (
symbols in Figure 5) with refinements as indicated in Figure 6. This series comprises
independent runs with different n values and the use of repeated refinement. That is why the
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 symbols are not lying on a smoothly varying curve. The results demonstrate that n-irregular
grids, with significant jumps in the element sizes, can give better performance than the more
commonly used one-irregular, smoother grids.

4.2. The ad6ection equation

The grid refinement technique described in this paper is applicable to time-dependent
phenomena. For illustration, Figure 7 shows the standard problem of pure advection of a
Gaussian hill in a rotating velocity field [29], solved by two uniform and one adaptive grid.

Figure 5. Plot of the error in a Poisson problem with singularities and known analytical solution. The symbol N
reflects the logarithm of the number of degrees of freedom, whereas E denotes the logarithm of the H1(V) norm of
the error. Curve A (—), uniform partition; curve B (2), ZZ-estimator I j*, one-irregular grid, bilinear elements; curve
C (�), refinement based on the size of 9c. , one-irregular grid, bilinear elements; curve D (� ), refinement inside a
prescribed geometric region, one-irregular grid, biquadratic elements; curve E (+ ), refinement inside a prescribed
geometric region, one-irregular grid, bilinear elements; and curve F (), refinement inside a prescribed geometric

region, nested n-irregular grid, bilinear elements (see Figure 6).
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Figure 6. Plot of the grid and the contour lines of the pressure c. in a flow case with two wells. There is a five-irregular
grid close to the wells, surrounded by a smoother one-irregular grid.

The numerical method was based on a SUPG formulation [30], backward Euler time scheme
and a lumped mass matrix. This approach is far from optimal for the simple advection
equation, but often used for more complicated non-linear equations modeling transport in
porous media flow. The adaptive mesh gives the same accuracy as a uniform mesh with over
four times the number of nodes. Also in this case, n-irregular grids with n\1 are advanta-
geous. The optimal solution in Figure 7 was produced by a geometric refinement criterion,
based on measuring the hill width, and a two-irregular grid with three refinement levels. For
efficiency, it is preferable to avoid coarsening and instead refine only the underlying coarse
grid at selected time levels.

4.3. 3D examples

The refinement method has been applied to problems where Equation (8) is solved on
three-dimensional grids. In the case where refinements are performed in the vicinity of wells,
the results are similar to those obtained in 2D, and because the 3D series is less comprehensive,
without giving new information, only the 2D results in Figure 5 are presented here. However,
a free surface groundwater flow model, based on Equation (8) and an advection equation for
tracking the water–air interface, has been studied in 3D and will be published elsewhere.
Figure 8 illustrates a simple refinement in a 3D box.
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5. A DOMAIN DECOMPOSITION METHOD

5.1. Basic ideas

In this section a new domain decomposition-type method is presented to improve a coarse
mesh finite element field by using the suggested refinement procedure. A well-known classical
approach for improving the accuracy of stress computations on a coarse mesh is to pick out
small parts of the mesh, apply the coarse grid solution as boundary condition and compute a
local solution using a fine grid [18,19]. Modern domain decomposition methods can treat the
same problem by iterating over the proper interface conditions [13] or using overlapping
domains [31]. Instead of using the coarse mesh solution as boundary conditions for the local
fine grid analysis, we propose to extend the local grid with coarse grid elements so that the
whole domain is covered in the local analysis. This means that the physically correct boundary
conditions are also applied in the local analysis. From a practical point of view, the grid
needed in the local analysis is simply a coarse mesh with an n-irregular fine mesh over a local
region. This local region could be a single coarse mesh element, but to improve the accuracy,
the local mesh can also consist of a coarse mesh element and its neighbors [18,19]. Including
the neighbors might reduce the effect of the irregular nodes and the constraints if it is not
intended to make use of the solution over the neighbor elements.

Let G={V1
c, . . . , Vnc

c } denote the set of coarse grid elements. A refined mesh Gk is based on
G, but where Vk

c and its adjacent elements are refined into q×q grids, producing a global
(q−1)-irregular mesh. One can create nr5nc such refined meshes Gk, each associated with a
coarse grid element. The advantage of working with nr separate, refined grids, and not a single
grid where all the nr coarse grid elements are refined simultaneously, is only evident when the
problem size prevents the single grid approach or the whole computation is to be performed

Figure 8. Example of 3D refinements in a box shaped domain.
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in parallel. An algorithm is presented below where the nr grids can be worked in sequence or
in parallel.

Having computed the nr independent solutions c (i ) over the locally refined grids Gi,
i=1, . . . , nr, a composite solution is established over a fine grid GF where all the nr target
elements for refinement are refined. Let c (i ) denote a function that vanishes at the nodes
outside Vi

c and that equals c (i ) at the nodes that belong to the refined Vk
c element. Two

alternative procedures are suggested.

5.1.1. Method 1. The fine grid solution over GF is simply established as a superposition of
the independent solutions c (i,0), i=1, . . . , nr. On the interfaces between refined subdomains we
can have contributions from different c ( j,0) fields. The composite field is then taken as the
arithmetic mean nr

−1 �j c ( j, 0). In a practical implementation, only the contributing j values are
taken into account. Other alternatives might employ partition of unity functions as weights,
such that there is a larger degree of exchange of information between the subdomains, but this
is not considered further herein.

5.1.2. Method 2. In this extended method an improved coarse grid solution is computed by
adding information from the independent solutions c (i,0). Thereafter, the improved coarse grid
solution and the solutions c (i,0) are combined. The improved coarse grid computation employs
the following expression for c. over Vk

c

c. (x)=c. (k,0)(x)+%
j

(Nj(x)c. j−Nj(x)c. j
(k,0)), x�Vk

c, (11)

where c. (k,0) has a standard finite element expansion over the fine grid, Nj denotes coarse grid
basis functions, c. j

(k,0) is the value of c. (k,0) at the coarse mesh nodes in Vk
c, and c. j denotes the

values of c. at the coarse mesh nodes. Inserting this in the model problem results in a modified
coarse grid problem. The following contribution is obtained from element Vk

c

%
j

a(Ni, Nj)c. j=L(Ni)+%
j

a(Ni, Nj)c. j
(k,0)−a(Ni, c. (k,0)).

The term a(Ni, c. (k,0)) must be integrated carefully because c. (k,0) is defined on a finer scale
than c. . Obviously, the ordinary Gauss–Legendre quadrature can be used over the fine grid
elements. Finally, the solution is computed over the fine grid GF by a superposition of the
contributions according to Equation (11) in the same manner as in method 1.

In the case where only Vk
c and not its neighbors are refined in a Gk grid, methods 1 and 2

are denoted by 1s and 2s (single element refinement). This domain decomposition procedure
can be very elegantly implemented utilizing OOP, where the simulator itself is an object.
Details are given elsewhere [32].

5.2. Numerical examples

To illustrate the proposed method, numerical experiments have been conducted in two
examples where the pressure equation was solved

−9 ·
�k

m
9c

n
= f on [0, 1]× [0, 1].

In the first test example, K is chosen as a smooth function, either constant, or

K=1+0.95 sin
2p

l
x sin

2p

l
y, (12)
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Table I. Solution error for a test problem with analytical solution and K=1

Method 1 Uniform meshq Method 2 Method 2s

3.76e-04 3.55e-04 3.64e-042 3.65e-04
3.67e-05 2.23e-05 2.92e-05 8.83e-054
5.52e-06 1.40e-068 3.79e-06 1.94e-05

16 1.14e-06 8.75e-08 7.29e-07 4.67e-06

The coarse mesh is a uniform 10×10 grid (nc=100).

Table II. Solution error for a test problem with analytical solution and K=1

Method 1 Uniform meshq Method 2 Method 2s

6.11e-03 5.53e-032 5.46e-03 6.06e-03
1.29e-03 3.55e-044 3.60e-04 1.27e-03

8 2.74e-04 2.23e-05 2.68e-05 2.71e-04
6.54e-0516 1.40e-06 2.71e-06 6.46e-05

The coarse mesh is a uniform 5×5 grid (nc=25).

where 2p/l should not equal an integer. The right hand side f and the boundary conditions are
adjusted such that c=cos px cos py, is the solution of the problem. It is then easy to compute
the true approximation error in the numerical method. Tables I and II show how the error
varies with the methods and the value of the subdivision parameter q in the case K=1. The
uniform mesh corresponds to q×q refinement of all the coarse mesh elements. We see from
Table III that the differences between the methods are fairly small when the coarse grid has
10×10 elements. Making the coarse grid even coarser (5×5 elements) leads to varying
performance of the methods. Table IV shows that the simple method 1 increases the error by
approximately an order of magnitude compared with a uniform fine mesh computation.
Method 2 is capable of coming very close to the uniform fine mesh computations, while
refining only single elements (method 2s) exhibits the same behaviour as method 1. When K is
given by Equation (12) more encouraging results are achieved, as shown in Tables III and IV.
For this more challenging example, the error introduced by various approximation methods is
much smaller. The conclusion is that the suggested overlapping domain decomposition
procedure is a valuable tool for solving at least these types of elliptic problems with smooth
solution.

The second test example has f=0 and piecewise constant K with a large jump. Inside the
ellipse, K=10−8, and outside K=1. This problem models porous media flow around an
almost impermeable elliptical-shaped, geological obstacle. If the discontinuities of K do not
coincide with the element surfaces, significant inaccuracies in the computations can occur.
Ideally, sophisticated gridding techniques would be applied to let the element surfaces follow
the geological subdomains. From a practical point of view it would, however, be very
advantageous to have a method that also works satisfactorily in the case where the boundaries
of the geological subdomains intersect with the finite element mesh. Decreasing the mesh size
in the vicinity of such intersections represents a mean for increasing the accuracy. Typical Gk

grids are depicted in Figure 9.
Figure 10 compares velocities (K/m)9c computed by method 2, with velocities from a fine

grid uniform mesh computation. When using the underlying coarse mesh only, there is almost
no effect of the low-permeable region on the velocity field. One should recognize that this is
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Table III. Solution error for a test problem with analytical solution and
smoothly varying K according to Equation (12) with l=0.17

Method 1q Uniform mesh Method 2 Method 2s

3.1553e-03 2.6094e-03 2.7943e-032 2.8390e-03
4 6.4103e-04 5.5724e-04 5.7678e-04 6.1735e-04

3.4151e-04 3.1021e-048 3.1848e-04 3.1023e-04
2.0173e-05 1.7318e-05 1.8391e-0516 2.3523e-05

The coarse mesh is a uniform 10×10 grid (nc=100).

Table IV. Solution error for a test problem with analytical solution and
smoothly varying K according to Equation (12) with l=0.17

q Method 1 Uniform mesh Method 2 Method 2s

1.9326e-02 1.9341e-02 1.9399e-022 1.9483e-02
2.6580e-03 2.6094e-03 2.6243e-034 3.8218e-03
5.6916e-04 5.5724e-048 5.6381e-04 8.2821e-04
3.1843e-04 3.1021e-0416 3.1287e-04 3.8427e-04

The coarse mesh is a uniform 5×5 grid (nc=25).

a very challenging problem. The effect of an obstacle is only detected in a small region at a
time, and the quantity presented in the figures is the deri6ati6e of the primary unknown.

6. CONCLUSION

A unified finite element mesh refinement algorithm that works in 1D, 2D, 3D and in even
higher dimensions has been presented and investigated in this paper. The algorithm can handle

Figure 9. Sketch of a Gk grid as used in the domain decomposition-type methods in Section 5, with refinements in the
vicinity of a low-permeable formation, illustrated by the black ellipse. (a) Gk has refinement of coarse grid element Vk

c

and its neighbors; (b) Gk has refinement inside Vk
c only.
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Figure 10. Velocity fields (K/m)9c in a flow problem with a low-permeable region (K=1 outside the obstacle and
K=10−8 inside). (a) uniform find grid solution, with 80×80 bilinear elements; (b) approximate numerical solution,
with method 2s, 10×10 coarse mesh, and q=8; (c) approximate numerical solution, with method 2, 10×10 coarse

mesh, and q=8; (d) approximate numerical solution, with method 2, 10×10 coarse mesh, and q=16.

tensor product Lagrange elements of arbitrary polynomial degree, but is currently limited to
h-refinement. The subdivision of elements preserves the element type, i.e. no new transition
elements are introduced. Irregular nodes appear as a result of the refinement process, and lead
to additional constraint equations. It has been shown that in addition to the common
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continuity requirement of the primary unknown field at irregular nodes, continuity of the flux
is also important, and this additional constraint can be incorporated by a symmetrization of
the original constraint equation. The resulting meshes can be n-irregular, with the common
choice n=1 as a special case. By numerical examples related to single-phase porous media
flow we have demonstrated that n-irregular meshes can be advantageous for n\1. We have
also experimented with various refinement criteria without reaching any unique conclusions.
Criteria based on geometric information about the domain, the coefficients and the solution
can sometimes be clearly superior to criteria based on standard and widely used error
estimation procedures. This has been illustrated in a porous media flow problem with
singularities at the wells.

The n-irregular refinements for n\1 lead naturally to locally refined grids that are extended
by coarse grid elements to cover the whole physical domain. Such grids have been used in a
domain decomposition-type approach and the performance of various strategies demonstrated.

A major advantage of the present refinement algorithm and its object-oriented implementa-
tion is that existing (Diffpack) finite element simulators can immediately take advantage of
adaptive grids by incorporating about ten extra lines of code in the managing part of the
program. Since there is no need to modify thoroughly debugged numerics, utilization of
adaptive grids in a simulator is a simple, reliable and efficient process. Simulators have already
been equipped for injection moulding and free surface groundwater flow with adaptivity, and
results for these cases will be reported elsewhere.
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APPENDIX A. FLUX CONTINUITY REQUIREMENTS

The incorporation of the constraint equation (3) can be performed in two ways. Method N
consists of a direct insertion of Equation (3) into the linear system (2) which is assembled
without paying any attention to the constraint. This yields Equation (4) and appears to be a
common strategy in some of the fundamental literature [33,34]. Besides introducing a non-sym-
metric stiffness matrix even if the matrix Aij in Equation (2) is symmetric, this procedure does
not preserve flux continuity in a weak sense. We will show in detail how a physically sound
handling of the fluxes is equivalent to a symmetry preserving introduction of the constraint
equation (3) in (2). This results in Equation (5), and this approach is referred to as method S
in the following. Note that method S can be viewed as applying method N followed by a row
modification of the system. The row modification uses information from the assembled finite
element equation for the constrained node. This information is unused in method N.

First the class of problems to be considered is defined, and a definition of the flux is given.
Consider a term on the form 9 ·u in a partial differential equation. It is assumed that u is a
vector (as in heat transport or porous media flow) or a tensor (as in elasticity). The associated
flux through a surface G is then 	G u ·n. In the finite element method, 9 ·u is usually integrated
by parts, and the flux term associated with one element is annihilated by the flux term of a
neighbor element at all internal boundaries. This result is based on the assumption of a
continuous flux. In many problems flux continuity follows directly from physical
considerations.
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Consider an internal boundary G between finite elements. At one side of G there are coarse
grid elements, while there are fine grid elements at the other side (see Figure 11). On this
interface, there is a set J of irregular, constrained nodes. They are constrained by a set I of
parent nodes. The total set of nodes on G is K=I@J. The finite element equation with parent
node A is investigated in Figure 11. The node A contributes to the constraint equations of all
the irregular nodes in J. The figure is in 2D, but the following considerations are also valid for
higher dimensions, for any interpolation order, and for any element subdivision. All quantities
restricted to coarse elements have a prime, and quantities without primes refer to fine grid
elements.

Flux continuity in the weak sense implies&
G

NAu ·n dG+
&

G
N %A(u ·n)% dG=0. (13)

Without refinement, NA=N %A along G, and since we analytically assume u ·n= − (u ·n)%, the
integrals sum to zero. However, consider the situation in Figure 11, and the contribution bA

to the right-hand-side of the discrete equation system

bA=%
e

&
Ge

NAu ·n dG−
&

G
N %Au ·n dG. (14)

Here, Ge is the part of G restricted to fine grid element e. This right-hand-side term will in
general not vanish. The incorporation of the constraint equation (2) by method N does not
affect this result. Now, it will be shown that the symmetric implementation of the constraint
equation in method S modifies the right-hand-side contribution (14) and, in fact, totally
removes it and thereby re-establishes the flux compatibility.

When the constraint equation is written in terms of the basis functions as in Equation (1),
the row modification produces a contribution from each constrained node j on G to the
right-hand-side of the equation of node A reading

CAbj=N %A(jj)bj=N %A(jj) %
e

&
Ge

Nj u ·n dGe. (15)

Figure 11. Sketch of a refined grid and where fluxes are to be computed along the interface G, defined by the line BB%
in the figure. All elements containing a cross contribute to the flux integrals.
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Now, the right-hand-side of equation A after the row modification reads

bA=%
e

&
Ge

NAu ·n dGe−
&

N %Au ·n dG+ %
j�J

%
e

N %A(jj)
&

Ge

Nj u ·n dGe. (16)

By the simple property of the basis functions

N %A(jj)=
!1

0
if j is a parent node on G and equal to A
if j is a parent node on G and equal to A

, (17)

The following term can be rewritten

%
e

&
Ge

NAu ·n dGe= %
i�I

%
e

N %A(ji) ·
&

Ge

Ni u ·n dGe. (18)

The two sum terms in Equation (16) can then be merged

bA= −
&

N %Au ·n dG+ %
k�K

%
e

N %A(jk)
&

Ge

Nku ·n dGe. (19)

Providing tensor product elements of the Lagrange type are used and are of the same order
on each side, then for each subarea Ge a simple connection can be formed between the basis
functions in the refined part and in the coarse part

N %A= %
k�Ge

N %A(jk) · Nk, (20)

where the sum is taken over the nodes on the interface belonging to element e. Splitting the
integral over G in Equation (19) into a sum over the subintervals Ge and introducing the
relation (20) gives

bA= −%
e

%
k�Ge

N %A(jk)
&

Ge

Nku ·n dGe+ %
k�K

%
e

N %A(jk)
&

Ge

Nku ·n dGe. (21)

Realizing that the sums can be interchanged, the result is the desired one: bA=0.
It has been shown that the symmetric incorporation of the constraint equations has ensured

that the flux terms for a general parent node A across the internal irregular element interface
G are zero when it is assumed that the physical flux is continuous, and tensor product elements
of the Lagrange type are used.
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Computing, Birkhäuser, Basel, 1997.

33. G.F. Carey and J.T. Oden. Finite Elements: Computational Aspects, 6olume III in the Texas Finite Element Series,
first edition, Prentice-Hall, Englewood Cliffs, NJ, 1986.

34. B.A. Finlayson, Numerical Methods for Problems with Mo6ing Fronts, 1st edn., Ravenna Park Publishing, Seattle,
USA, 1992.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 679–702 (1998)


